

Vidya Bhawan, Balika Vidyapith Shakti Utthan Ashram, Lakhisarai - 811311 (Bihar)

Class: -X

<u> Topio: - Polynomial</u>

Subject: -Mathematics

Some important formulas and Rules

Important Algebraic Formulas	Some important properties related to zeroes
1. $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	$P(x) = ax^2 + bx + c$
2. $\alpha^2 - \beta^2 = (\alpha + \beta)(\alpha - \beta)$	1. If sign of product of ac is positive and sign of b is positive then both zeroes are negative
$3. (\alpha - \beta) = \pm \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$	$P(x) = x^{2} + 5x + 6 = x^{2} + 3x + 2x + 6$ = x(x + 3) + 2(x + 3) = (x + 3) (x + 2) $P(x)=0; (x + 3) = 0 \text{ or } (x + 2) = 0 \therefore x - 3 \text{ or } -2$
$4. (\alpha^3 + \beta^3) = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$	2.If sign of product of ac is positive and sign of b is negative then both zeroes are positive
$5.\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{\alpha\beta}$	$P(x) = x^2 - 5x + 6 = x^2 - 3x - 2x + 6$ = x(x - 3) - 2(x - 3) = (x - 3) (x - 2) $P(x) = 0; (x - 3) = 0 \text{ or } (x - 2) = 0 \therefore x = 3 \text{ or } 2$
$6.\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2$	3. If sign of product of ac is negative and sign of b is negative or positive then both zeroes are opposite
$7.\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2} = \frac{(\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2}{\alpha^2\beta^2}$	sign. $P(x) = x^2 - x - 6 = x^2 - 3x + 2x - 6$ $= x(x - 3) + 2(x - 3) = (x - 3) (x + 2)$ $P(x) = 0; (x - 3) = 0 \text{ or } (x + 2) = 0 \therefore x = 3 \text{ or } -2$
Do	Your Self
1) If α and β are the zeroes of the quadratic polynomial $p(x) = ax^2 + bx + c$ then evaluate: a) $\alpha^2 + \beta^2$	 2) Find the zeros of each of the following quadratic polynomial and verify the relationship between the zeros and their coefficients: a) f(x) = x² - 2x - 8
polynomial $p(x) = ax^2 + bx + c$ then evaluate:	quadratic polynomial and verify the relationship between the zeros and their coefficients:
polynomial $p(x) = ax^2 + bx + c$ then evaluate: a) $\alpha^2 + \beta^2$	quadratic polynomial and verify the relationship between the zeros and their coefficients: a) $f(x) = x^2 - 2x - 8$
polynomial $p(x) = ax^2 + bx + c$ then evaluate: a) $\alpha^2 + \beta^2$ b) $\alpha^3 + \beta^3$	 quadratic polynomial and verify the relationship between the zeros and their coefficients: a) f(x) = x² - 2x - 8 b) p(x)=6x² - 3 - 7x
polynomial $p(x) = ax^2 + bx + c$ then evaluate: a) $\alpha^2 + \beta^2$ b) $\alpha^3 + \beta^3$ c) $\alpha^4 + \beta^4$ d) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$	quadratic polynomial and verify the relationship between the zeros and their coefficients: a) $f(x) = x^2 - 2x - 8$ b) $p(x)=6x^2 - 3 - 7x$ c) $p(x) = x^2 + 2\sqrt{2x} - 6$ d) $q(x) = \sqrt{3x^2 + 10x} + 7\sqrt{3}$ e) $g(x) = a(x^2 + 1) - x(a^2 + 1)$
polynomial $p(x) = ax^2 + bx + c$ then evaluate: a) $\alpha^2 + \beta^2$ b) $\alpha^3 + \beta^3$ c) $\alpha^4 + \beta^4$ d) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ e) $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$	quadratic polynomial and verify the relationship between the zeros and their coefficients: a) $f(x) = x^2 - 2x - 8$ b) $p(x)=6x^2 - 3 - 7x$ c) $p(x) = x^2 + 2\sqrt{2x} - 6$ d) $q(x) = \sqrt{3x^2 + 10x} + 7\sqrt{3}$
polynomial $p(x) = ax^2 + bx + c$ then evaluate: a) $\alpha^2 + \beta^2$ b) $\alpha^3 + \beta^3$ c) $\alpha^4 + \beta^4$ d) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$	quadratic polynomial and verify the relationship between the zeros and their coefficients: a) $f(x) = x^2 - 2x - 8$ b) $p(x)=6x^2 - 3 - 7x$ c) $p(x) = x^2 + 2\sqrt{2x} - 6$ d) $q(x) = \sqrt{3x^2 + 10x} + 7\sqrt{3}$ e) $g(x) = a(x^2 + 1) - x(a^2 + 1)$
polynomial $p(x) = ax^2 + bx + c$ then evaluate: a) $\alpha^2 + \beta^2$ b) $\alpha^3 + \beta^3$ c) $\alpha^4 + \beta^4$ d) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ e) $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$	quadratic polynomial and verify the relationship between the zeros and their coefficients: a) $f(x) = x^2 - 2x - 8$ b) $p(x)=6x^2 - 3 - 7x$ c) $p(x) = x^2 + 2\sqrt{2x} - 6$ d) $q(x) = \sqrt{3x^2 + 10x} + 7\sqrt{3}$ e) $g(x) = a(x^2 + 1) - x(a^2 + 1)$ f) $h(t) = t^2 - 15$

Example: - If α and β are the zeros of the quadratic polynomial $p(x) = ax^2 + bx + c$ then evaluate $\alpha^2 + \beta^2$

$$\mathbf{p(x)} = ax^2 + bx + c$$

$$\alpha + \beta = \frac{-b}{a}, \ \alpha\beta = \frac{c}{a}$$

We know that
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$

$$= \left(\frac{-b}{a}\right)^2 - 2\frac{c}{a} = \frac{b^2 - 2ca}{a^2} \underbrace{\operatorname{Insuer}}_{a}$$

Example: - Find the zeros of each of the following quadratic polynomial and verify the relationship between the zeros and their coefficients:

$$f(x) = x^{2} - 2x - 8$$

$$f(x) = x^{2} - 2x - 8$$

$$= x^{2} - 4x + 2x - 8$$

$$= x(x - 4) + 2(x - 4)$$

$$= (x - 4) (x + 2)$$

Now $f(0) = 0$

$$\Rightarrow (x - 4) (x + 2) = 0$$

$$\Rightarrow (x - 4) = 0 \text{ or } (x + 2) = 0$$

$$\therefore x = 4 \text{ or } -2$$

Insure

Relationship between the zeros and their coefficients:-

Sum of zeros = $\frac{-b}{a}$ $4 + (-2) = \frac{-(-2)}{1}$ $\therefore 2 = 2$ *Overified* Product of zeroes = $\frac{c}{a}$ $4 \times (-2) = \frac{-8}{1}$ $\therefore -8 = -8$ *Overified*